Этапы изучения алгоритма в школе

Страница 6

9. Сколько железнодорожных платформ потребуется для перевозки 183 контейнеров, если на одной платформе можно разместить не более 5 контейнеров.

10. Одна сторона треугольника равна 8 см., другая – 13см.

каким наименьшим целым числом сантиметров может быть длина третьей стороны?

каким наибольшим целым числом сантиметров может быть длина третьей стороны?

11.При каких значениях х точки графика функции у=3х+1.5 лежат выше точек графика функции у=-2х+1.

Формирование алгоритма « Решение неравенств второй степени с одним неизвестным»

Цель:

выработать умение решать неравенства второй степени с одним неизвестным и системы квадратных неравенств.

Решение квадратных неравенств – это традиционно обособленная часть исследования свойств квадратичной функции. Например, задача о решении неравенства х2-5х+6<0 может быть переформулирована в задачу о нахождении промежутков, на которых функция у =х2-5х+6 принимает отрицательные значения, а это легко решается с помощью эскиза графика. Этот способ фактически является строгим обоснованием графического способа.

Метод интервалов является логическим продолжением решения квадратных неравенств. Он позволяет решать более сложные неравенства, у которых левая часть – многочлен любой степень, представляемый в виде простых множителей, или дробь, у которой числитель и знаменатель также многочлены, разлагаемые на множители.

В результате изучения темы учащиеся должны уметь:

решать квадратные неравенства с одной неизвестной графически и методом интервалов

Специфические действия:

Привидение неравенства к квадратному виду.

Решение квадратных уравнений.

Построение графиков функций (схематично).

Выполнение тождественных преобразований.

Определение знака выражения на соответствующих промежутках.

Алгоритм решения квадратных неравенств с одной переменной.

«Ядерным» материалом темы является:

1. Понятия «< » , « > » неравенство, решение неравенства решение системы неравенств, равносильных неравенств;

2. Свойства числовых неравенств, равносильных неравенств;

3. Алгоритм решения квадратных неравенств с одной переменной и решения системы неравенств.

4. Свойства графика квадратичной функции.

Рассмотрим работу с алгоритмом решения неравенств второй степени (графически) поэтапно. На первом этапе полезно актуализировать знания: нахождение корней квадратного трёхчлена, дискриминанта, изображение графиков квадратичных функций (схематично). После этого формулируем сам алгоритм. На втором этапе отрабатываем отдельные операции, входящие в алгоритм: изображение графиков функций, нахождение при каких значениях х функция принимает положительные, а при каких отрицательные значения. На третьем этапе применяем алгоритм при решении более сложных задач.

I. Введение алгоритма.

Рассмотрим введение алгоритма “решение неравенств второй степени с одним неизвестным” (графическим методом) с использованием обучающих самостоятельных работ.

1.Актуализация знаний

Обучающую самостоятельную работу проводим по новому материалу,

но перед этим повторим ранее изученные понятия, которыми придётся воспользоваться.

1. у у у

а) Куда направлены ветви параболы?

b) Пересекает ли парабола ось ох, если да то сколько раз?

с) При каких х парабола принимает положительные значения?

d) При каких х парабола принимает отрицательные значения?

2. Изобразите схематично график функции.

Страницы: 1 2 3 4 5 6 7 8 9 10 11

Материалы по педагогике:

История представлений о дифференцированном и индивидуальном подходе к ученикам
Проблема индивидуального подхода к детям волновала передовых учителей и прогрессивных мыслителей еще до революции. Революционные демократы с большой страстностью критиковали педантичное, холодное отношение к детям, требовали внимания к ребенку, к его возрастным и индивидуальным особенностям. Настой ...

Общая характеристика развития речи у учащихся младших классов, имеющих нарушения интеллекта
Орудием человеческого мышления, средством общения и регуляции деятельности служит речь. У всех без исключения умственно отсталых учащихся наблюдаются более или менее выраженные отклонения в речевом развитии, которые обнаруживаются на различных уровнях речевой деятельности. Одни их них относительно ...

Дидактическая игра как средство, повышающее эффективность обучения русскому языку в коррекционной школе
Игра, как феномен человеческой деятельности, издавна является предметом изучения самых разнообразных отраслей знаний: философии, социологии, кибернетики, психологии, педагогики. К настоящему времени накопился немалый фонд педагогической литературы об игре как средстве воспитания вообще. Имеются раб ...

Навигация